Conte Center Overview

Mapping Neurodevelopmental Abnormality in Schizophrenia

P20 MH62130

(start date 9/1/01)

John G. Csernansky, M. D.^{1,3}

Rationale for the Development of a Multi-Institutional Center to Study the Neurobiology of Schizophrenia

Schizophrenia as a Progressive Illness

Atypical Antipsychotics: In Vitro Receptor Profiles

New Drug Treatments May Slow Progression

Mean time to relapse - 452 (risperidone), 391 (haloperidol) days (p < .001)

Can the First Episode of Schizophrenia Be Prevented?

SPI-F - full drug adherence; SPI - poor drug adherence; NBI - needs based intervention

Criteria for Subject Inclusion:

- 1) schizophrenia in 1st degree relative plus non-specific sxs and function decline
- 2) attenuated positive symptoms for at least one week, but below psychosis threshold
- 3) psychotic symptoms above threshold, but lasting less than one week

Surrogate Biomarkers to Improve the Diagnosis of Schizophrenia

- Neurochemistry (dopamine, serotonin, glutamate)
- Genetics (susceptibility genes, modifying genes)
- Cognition (attention, memory, executive function)
- Psychophysiology (SPEM, P50, P300)
- Brain structure (neurodevelopment/neurodegeneration)

Ventricular Enlargement in Schizophrenia is Discovered Using Computerized Tomography

Searching for Volume Loss Implicates the Structures of the Limbic System

Neuroanatomical Abnormalities Arise from an Early Developmental Defect

NADPH-d neurons are reduced in gray matter compartments and increased in white matter compartments in the hippocampus of subjects with schizophrenia.

The Conte Center at Washington University - Central Goals

- define the pattern of neuroanatomical abnormalities in schizophrenia
- investigate their cause(s) (i.e., genetic and environmental)
- explore their cellular basis in an relevant animal model
- establish their cognitive and clinical implications in patients with the disease

The Conte Center at Washington University - Organization

Projects

The Conte Center at Washington University - Clinical Assessment Unit

Four subject populations

Probands with schizophrenia (aged 16-40)

Siblings of schizophrenia probands (aged 16-26)

Healthy controls (aged 16-26)

Siblings of controls (aged 16-26)

Clinical Assessment

SCID-IV; Semi-structured clinical evaluation

SAPS, SANS

MADRS (mood), SUMD (insight)

SIPS, TCI, Chapman

Treatment History, ESRS

Smoking, Alcohol and Drug Use

Peri-Natal Risk Factors

The Conte Center at Washington University - Clinical Assessment Unit

Cognitive Assessment - Expert Administration

WAIS - vocabulary, matrix reasoning
WMS-III - logical memory, family pictures, digit span,
letter/number sequencing, spatial span
Trails A/B, verbal fluency, CVLT-II, Wisconsin Card Sort

Cognitive Assessment - Computerized

CPT - identical pairs, AX, degraded, NBACK Stroop Maintenance/manipulation task

Word experiment task

The Conte Center at Washington University - Neuroimaging Protocols

Structural assessment

MPRAGE x 4

Turbo-FLASH

T2-weighted

DTI

DTI (high resolution)

Functional assessment

Spin-echo, echo-planar, BOLD sensitive 2-BACK, incidental encoding (shallow vs.deep), yes/no recognition

Words and Faces

High Dimensional Diffeomorphic Brain Mapping

Intensity-based Diffeomorphic Transformation

conte.wustl.edu

New Information from Neuroanatomical Shapes

Template

Template

Transformation

Transformation

Transformed

Transformed

Measuring the Depth of the Cortex

- A Tissue segmentation
- **B Identifying the gray/white iso-** surface
- C- Assessing voxels at varying distances from the gray/white isosurface
- D cumulative probability of gray, white and CSF voxels

From: Miller, et al (2002) submitted for publication

conte.wustl.edu

Project 1: Neuromorphometry in Siblings at Risk for Schizophrenia (Csernansky/Cloninger)

Aims:

- Collect high-resolution MR scans in 60 probands with schizophrenia, their younger siblings, and control groups (matched to the siblings)
- Develop a database of neuromorphometric variables for each subject: Volume, shape, symmetry, anisotropy
- Test the hypothesis that the non-psychotic siblings of the schizophrenia probands will demonstrate structural abnormalities intermediate between probands and control groups
- Collection of longitudinal data (anatomical and clinical) so that predictors of later clinical changes can eventually be identified

Detecting Hippocampal Deformities in Schizophrenia: A Replication

Subjects:

Variables (mean +/- SEM [range])	Schizophrenia Subjects	Healthy Controls	
	50		
N	52	65	
Age	38.0 (1.74 [20-63])	40.0 (1.78 [20-67])	
Gender (M/F)	30/22	33/32	
Race (Cau/Afr-Amer/Other)	22/30/2	34/18/0	
Parental SES	4.1 (0.12 [2-5])	3.6 (0.13 [1.5-5])	
Age of Illness Onset	22.8 (1.18 [13-54])		
Total SAPS Score	19.7 (2.41 [0-67])		
Total SANS Score	19.7 (1.76 [0-52])		

MRI:

Turbo-FLASH sequence at 1 mm x 1 mm x 1 mm resolution

Comparison of Hippocampal Volumes and Shapes

Volume Scatter Plots

F = 7.9, df = 1,115, p = .006F = 2.5, df = 1,114, p = .12 (covaried for total brain volume)

Log-Likelihood Plot

F = 6.9, df = 5,111, p < .0001 (1, 5, 7, 14, 15)

Patterns of Hippocampal Deformity in Schizophrenia

Positive

Negative

Difference Mapped on Mean Control

Z-Scores Mapped on Mean Control

Eigenvector Reconstruction

Similarity of the patterns of shape deformation demonstrate the physical basis of the eigenvector solution

From: Csernansky, et al (2002) Am J Psychiatry 159:2000-2006.

A Study of the Thalamus in Schizophrenia Subjects and Controls

Volume Scatter Plots

F = 6.6, df = 1,115, p = .011F = 1.3, df = 1,114, p = .26 (covaried for total brain volume)

Log-Likelihood Plot

F = 2.8, df = 10,106, p = .004 (first ten EV)

A Study of the Thalamus in Schizophrenia Subjects and Controls

Identifying Schizophrenia Subjects by Combining Brain Structure Shape Information

Clues to Explain the Heterogeneity of Schizophrenia?

Patterns of Shape Change are Specific

Project 2: Structure, Function and Cognition in Schizophrenia (Barch/Buckner)

Aims:

- Determine the relationships between changes in brain structure and functional activation disturbances during cognitive challenge in subjects with schizophrenia
- Determine the relationships between changes in brain structure and functional activation disturbances during cognitive challenge in the non-psychotic siblings of subjects with schizophrenia

Altered Task-Related Activation in Working Memory and Episodic Memory Tasks

conte.wustl.edi

Project 3: Mapping Abnormal Neurodevelopment in an Animal Model of Schizophrenia (Selemon/Goldman-Rakic)

Aims:

- Collect high-resolution MR images in fetally-irradiated Rhesus monkeys at predetermined developmental time-points
- Evaluate the volume, shape and symmetry of subcortical structures of the monkey brain (e.g., thalamus) that have been directly affected by fetal irradation
- Evaluate the volume, shape and symmetry of limbic and cortical structures of the monkey brain (e.g.,hippocampus, cingulate gyrus, prefrontal cortex) that may have been indirectly affected by fetal irradation

Thalamic Deformaties Identified in Fetally-Irradiated Rhesus Monkeys by Diffeomorphic Brain Mapping

Volume Comparisons (mean +/- SD in mm³)

Group (N)	R Thalamus	L Thalamus	Total Cerebrum
EL (3)	416.39 (80.53)	392.24 (79.70)	56574 (9796)
LL (3)	517.48 (69.66)	526.44 (66.63)	55576 (5729)
Control (8)	542.31 (120.17)	537.01 (94.81)	62544 (12178)

Group effect F = 9.48, df = 2,11, p=.005

Early Irradiated < Late Irradiated = Control

From: Schindler, et al (2002) Biol Psychiatry 51:827-837

Thalamic Deformaties Identified in Fetally-Irradiated Rhesus Monkeys by Diffeomorphic Brain Mapping

Eigenvectors 1,4,8,9

EL and Controls - Wilks' Lambda F= 19.88, p= .003

LL and Controls - non-significant

From: Schindler, et al (2002) Biol Psychiatry 51:827-837

Project 4: Neuroanatomical Trait Loci in Recombinant Inbred Mouse Strains (Williams/Cheverud/Rosen)

Aims:

- Screen existing recombinant mouse strains (C57Bl BXD) to assess genetic variability in thalamic and hippocampal structure (e.g., volume, cell density)
- Determine whether there are functional correlates of neuroanatomical variability (e.g., performance on tests of memory and sensory filtering)
- Identify genetic loci (RLFPs) linked to such traits
- Determine whether presence of such loci predispose a strain to exaggerated injury following environmental insult (e.g., perinatal administration of kainic acid)

The Mouse Brain Library (www.mbl.org)

Schizophrenia as a Progressive Illness

Clinical Implications of Center Research

- *Early diagnosis and intervention* detecting abnormalities of brain structure during the prodromal phase of schizophrenia
- *Improved differential diagnosis* detecting abnormalities of brain structure present in patients with schizophrenia but not in patients with closely similar illnesses (e.g., bipolar disorder)
- *Development of new treatments* improving our understanding of the pathogenesis during its early phase, and developing new drug therapies or other treatments based on that understanding

How You Can Help?

- *Subject Referral* patients with schizophrenia who have well siblings in the age range of 14-26
- *Contact Information* Please call our administrative office at 314-747-2160, or e-mail us at joann@conte.wustl.edu
- Visit our website htttp://www.conte.wustl.edu